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We study the continuous phase transition of the conserved lattice gas �CLG� model from an active phase into
an absorbing phase on two fractal lattices, i.e., on a checkerboard fractal and on a Sierpinski gasket. In the
CLG model, a particle is assumed to be active if any of the neighboring sites are occupied by a particle and
inactive if all neighboring sites are empty. We estimate critical exponents �, �, ��, and ��, characterizing,
respectively, the density of active particles in time, the order parameter, the temporal and spatial correlation
lengths near the critical point, and the results are confirmed by off-critical scaling and finite size scaling. The
order parameter exponent � on a checkerboard fractal appears to lie between the one-dimensional �1D� value
and two-dimensional �2D� value of the CLG model, while that on a Sierpinski gasket lies between the 1D and
2D values of the conserved threshold transfer process. Such a difference is manifested based on the intrinsic
properties of the underlying fractal lattices.
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I. INTRODUCTION

The nonequilibrium phase transition from a fluctuating
phase into one or more absorbing states has attracted great
interest in recent years �1–4�. The most prominent and well-
known universality class is the directed percolation �DP�
class �5�. A typical example of a model which belongs to the
DP class is the contact process �CP� with a reaction-diffusion
scheme A→2A and A→0, in which each particle either cre-
ates an offspring with a rate � or annihilates with a rate �.
Many other models with quite different evolution rules were
also found to belong to the DP universality class, suggesting
the robustness of the DP class �1–4�. According to the con-
jecture proposed by Janssen and Grassberger, any continuous
phase transition from a fluctuating phase into a single ab-
sorbing state in a homogeneous, one-component system with
short-range interactions should belong to the DP class, pro-
vided that there are no additional conservation laws,
quenched randomness, or unconventional symmetries �6,7�.
However, various systems with many absorbing states have
also been found to belong to the DP class �8–10�. An ex-
ample of such a model is the pair contact process �PCP�, in
which pairs of particles either annihilate with probability p
or create a new particle on the randomly chosen empty
nearest-neighbor site �2A→0, 2A→3A�. Since each particle
is not allowed to diffuse, all isolated particles are inactive
and, therefore, systems with all particles isolated are in the
absorbing states. Despite the existence of many absorbing
states, the PCP model has been known to belong to the DP
class. �Note that exponents consistent with the DP class were
obtained only when the dynamics proceed from the system-
generated initial configuration �8�.�

The other widely known universality class is the parity-
conserving �PC� class, observed with additional symmetries.
The PC class is most likely represented by branching anni-
hilating random walks with an even number of offsprings
�BARW-n�, in which each particle either jumps to a nearest-

neighbor site with a probability p or produces n offsprings on
n nearest-neighbor sites �A→ �n+1�A� with a probability
1− p �11–14�. When a particle jumps to an already occupied
site and when an offspring is created on such a site, both the
incoming particle and the occupying particle annihilate each
other �AA→0�, leaving the site empty. When n is even, the
number of particles is conserved modulo 2, and this conser-
vation law is believed to be responsible for the non-DP be-
havior. When n is odd, on the other hand, since the last
remaining particle may produce an odd number of offspring
and pairs of particles are annihilated, the absorbing phase is
a single vacuum state. The BARW-n model with odd n, thus,
satisfies the DP hypothesis and belongs to the DP class.

Another, yet controversial, universality class is the pair
contact process with diffusion �PCPD� class. The term PCPD
originated from the PCPD model, which is a variant of the
PCP model, obtained by allowing diffusion of each particle
to the neighboring empty site. The PCPD model was origi-
nally reported to belong to a new universality class �15–17�;
however, its critical behavior is still in controversy mainly
due to a slow convergence to the asymptotic limit �18�.

Recently Rossi et al. proposed a lattice model with a con-
served field, called the conserved lattice gas �CLG� model
�19�. In the CLG model, a particle is defined as active if it
has at least one particle in the nearest-neighbor sites. If a
particle is surrounded by empty sites, it is considered to be
inactive. The dynamics proceed by only a repulsive interac-
tion, i.e., each active particle tends to hop to one of the
empty nearest-neighbor sites. Thus, there is no particle cre-
ation and annihilation, no external field which converts an
inactive particle to an active one, and no self-diffusion. Rossi
et al. found from Monte Carlo simulations in two dimensions
that the measured critical exponents of the CLG model co-
incide with those of the conserved threshold transfer pro-
cesses �CTTP� �9� and the stochastic sandpile models �20�,
indicating that all these models belong to the same univer-
sality class.

More recently Lübeck carried out extensive simulations
for the CLG model in two, three, four, and five dimensions
and showed that the critical exponents in four and five di-*Corresponding author; sblee@knu.ac.kr
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mensions are identical, implying that the upper critical di-
mension of the CLG model is four �21�. He also carried out
simulations for both the CLG model and the CTTP model
with an external field which converts an inactive particle to
an active one �22–24�. The CTTP model is a modification of
the threshold transfer process �9�. In this model, each lattice
site may be empty, occupied by one particle, or occupied by
two particles. Empty and singly occupied sites are consid-
ered inactive, whereas doubly occupied sites are considered
active. In the latter case, one tries to transfer both particles
on a given active site to randomly selected nearest-neighbor
sites. If all neighboring sites are occupied by two particles,
the transfer stops. Lübeck found that the exponents estimated
for the CLG model were indeed close to those of the CTTP
model in two and three dimensions.

In one dimension, however, it is known that a universality
split occurs due to the distinct features of the CLG model
from the CTTP model. The order parameter exponent � was
found to decrease from 1.0 to 0.64 as the dimensionality d
decreased from 4 to 2 for both CLG and CTTP models, and
it jumped to 1.0 at d=1 for the CLG model �25�, whereas it
decreased monotonically down to 0.382 at d=1 for the CTTP
model. The CLG model in one dimension has two symmetric
absorbing phases at the critical density of �c=0.5, i.e.,
010 101¯ and 101 010¯, while in higher dimensions, many
absorbing states exist. In addition, the dimensional reduction
yields the particle hopping deterministic; i.e., each active
particle in the CLG model has an occupied nearest-neighbor
site in one of two directions and an empty site in an opposite
direction. Therefore, the site to which an active particle
jumps is determined by a local conformation, rather than by
random selection. In the CTTP model, on the other hand,
since each active site may have one or two neighboring in-
active sites depending on the conformations, the sites to
transfer the particles may be determined stochastically. The
symmetric absorbing states at the critical density and the
deterministic jump are the characteristic features of the CLG
model which are distinct from the CTTP model, and it has
been conjectured that at least one of these two features might
be responsible for such a split of the universality class. We
are interested in which of the features is the major source of
the universality split. Recent work by Park et al. demon-
strated that a conserved lattice model of two species of par-
ticles having two symmetric absorbing states indeed yielded
critical exponents different from the known models �25�.

In this paper, we investigate the continuous phase transi-
tion of the CLG model on two selected fractal lattices with a
dimensionality between 1 and 2. We are particularly inter-
ested in how the exponent � varies on two selected fractal
lattices, i.e., on a checkerboard fractal and on a Sierpinski
gasket �26,27�. On both fractal lattices, the CLG model no
longer has symmetric absorbing states at critical density and
jumps of active particles are not fully deterministic. How-
ever, jumps on a checkerboard fractal appear to be more
likely deterministic due to the intrinsic properties of the no-
loop structure and less number of nearest-neighbor sites. On
the other hand, a Sierpinski gasket has the coordination num-
ber four, i.e., all sites have four nearest-neighbor sites and,
accordingly, jumps of active particles are stochastic. There-
fore, if the symmetric absorbing states at criticality are re-

sponsible for the universality split, the value of � of the CLG
model on both lattices will follow the trend of the CTTP
model �i.e., both models will belong to the same universality
class�. On the other hand, if the results for the two fractal
lattices are distinctly different, the deterministic feature of
the CLG model might be the major cause of such a univer-
sality split. Therefore, we expect that our work on the two
fractal lattices will shed light on the universality split.

The absorbing phase transition �APT� may be influenced
by the intrinsic properties, such as ramification, connectivity,
and lacunarity of the fractal lattice as well as by the frac-
tional dimensionality. Earlier work by Gefen et al. on equi-
librium systems demonstrated that the critical behavior de-
pends on the details of the construction of the fractal �28�. In
order to clarify such possibilities on the APT, we performed
preliminary simulations for the CP model on two distinctly
different fractal lattices, a checkerboard fractal and a Sierpin-
ski carpet, the former of which is a finitely ramified fractal
and the other is an infinitely ramified fractal. �“Finitely rami-
fied” implies that any part of the fractal may be isolated from
the rest by cutting out a finite number of bonds.� Our pre-
liminary results, compared with the interpolated results of
the Monte Carlo measurements on regular lattices, indicated
that the critical exponents of the APT were influenced only
by the lattice dimensionality for a checkerboard fractal,
while for a Sierpinski carpet, the intrinsic properties ap-
peared to have a nontrivial effect �29�. Assuming that similar
results would also be observed for the CLG model, we ex-
pect that the intrinsic properties other than those discussed in
the preceding paragraph would not alter the critical behavior
for the selected finitely ramified fractal lattices.

The paper is organized as follows. In Sec. II, the genera-
tion method of the fractal lattices and Monte Carlo method
for the CLG model will be described. In Sec. III, results will
be presented with appropriate discussions and, finally in Sec.
IV, the summary and the concluding remarks will be pre-
sented.

II. MODELS AND SIMULATION METHODS

The simulation method consists of two steps. First, one
must generate a fractal lattice of the desired size and, second,
one must carry out the dynamics of the CLG model.

The underlying fractal lattices we selected are the check-
erboard fractal and the Sierpinski gasket both of which are
embedded in a two-dimensional space. The checkerboard
fractal is generated by the following steps. In the first gen-
eration, a single square is divided into nine identical but
smaller squares and the alternately placed four off-diagonal
squares are eliminated. In the second and higher generations,
each remaining square is again divided and the alternate four
squares are eliminated. The same fractal lattice may be ob-
tained alternatively by iterative growing processes �27�. Af-
ter the kth generation is completed, the number of squares is
N�L�=5k and the length of the edge of the system is L=3ka,
where a is the lattice constant and may be set a=1. Assum-
ing that each square consists of a unit mass, the fractal di-
mension is obtained as dF=ln N�L� / ln L=ln 5/ ln 3. In the
constructed fractal, the lattice site is assumed to be at the
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center of each remaining square. Since all the nearest-
neighbor squares of the remaining square are eliminated, all
lattice sites are surrounded by empty spaces, and the nearest-
neighbor undeleted squares are located along the diagonal
directions. Therefore, assuming the bonds between two
nearest-neighbor sites along the diagonal directions, one can
construct the connected fractal lattice. The sample fractal
lattice generated up to four generations is shown in Fig. 1.

The Sierpinski gasket can be generated similarly. In the
first generation, a single triangle is divided into four smaller
triangles by connecting the three midpoints of the edges of
the triangle and the inverted triangle at the center is elimi-
nated. In the second and higher generations, each remaining
triangle is again divided and the inverted one is eliminated.
The lattice sites are assumed at the corners of the triangles.
The total number of lattice sites in the Sierpinski gasket gen-
erated up to the kth order is N�L�=6+ 3k+1−9

2 and the length of
the edge of the system is L=2k. The fractal dimension is,
thus, given as dF=ln N�L� / ln L→ ln 3 / ln 2 as k→�. It
should be noted that the fractal dimension calculated with the
mass of the sites is identical to that calculated with the mass
of the unit triangles only when the fractal is infinitely large.

The dynamics of the CLG model proceed as follows. Ini-
tially �N particles are distributed on the randomly selected
sites of the given fractal lattice, where N is the total number
of sites on the underlying fractal lattice. In each time step, an
active particle is selected from the list of active particles and
it attempts to jump to one of the nearest-neighbor sites. If the
selected site is already filled by a particle, the current trial is
discarded and, otherwise, a jump is made. In each trial, the
evolution time is increased by 1/Na, Na being the number of
active particles. When an active particle at one of the corner
sites is selected, a particle may either jump out of the system
or be reflected by the boundary. Therefore, it is necessary to
setup boundary conditions.

The number of boundary sites of the checkerboard fractal
is four, while it is three for the Sierpinski gasket. For a
checkerboard fractal, considering that the current cell is a

part of the larger cell of a higher order generation, the four
replicated cells can be assumed to be at the four corners of
the given cell. Then, when a particle exits along the +x
�+y� axis, the particle is assumed to reenter the system
through the −x �−y� axis at the opposite corner, or vice versa.
For a Sierpinski gasket, the replicated cells may be assumed
analogously, but the same periodicity may not be warranted.
The three replicated cells may be assumed to be at the three
corners, as shown in Fig. 2. When a particle exits through
point B or C, it can be assumed to reenter through point A
along the same direction as it exited. However, the reverse
does not hold. For example, assuming that a particle exits
through point B, it reenters the cell through point A. When
the same particle attempts to reexit through point A, it should
reenter the cell through point B since it entered point A via
point B. However, the periodicity of the cell allows the par-
ticle which exited through point A to reenter through point C.
Therefore, the periodicity along the horizontal direction fails.
Such a failure of the periodicity may be resolved by coloring
only the particles which exited the cell through point B and
reentered through point A. When colored particles exit the
cell through point A, they are restricted to reentering the cell
only through point B. In order to speed up the calculations,
we avoid such a tedious procedure and apply the reflective
boundaries, assuming that particles at the three corners of the
cell always reflect from the boundary. We find that a different
boundary condition influences only the nonuniversal critical
point, leaving the critical exponents unchanged.

III. RESULTS AND DISCUSSIONS

In most of our simulations, the checkerboard fractal is
generated up to the seventh order with 78 125 lattice sites
and the Sierpinski gasket up to the eleventh order with
265 722 sites. We also generate one higher order for both
cases whenever the selected size is determined to be insuffi-
cient. The CLG model is simulated up to 107 time steps.

Since the dynamics proceed by active particles, the den-
sity of the active particles, �a, is the main interesting quan-

xy

0

FIG. 1. The sample checkerboard fractal lattice generated up to
four generations. The coordinates are set along the two diagonal
directions, and any two sites on the nearest-neighbor squares along
the diagonal directions are assumed to be connected.

FIG. 2. The original cell ABC of the Sierpinski gasket and the
parts of its replicated cells placed at the three corners. For the
periodicity conditions, see text.
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tity. Starting with the particles of density � distributed ran-
domly, �a decreases, as the dynamics proceed, from its initial
value by the hopping of the active particles. If � is suffi-
ciently small, �a decreases rapidly and vanishes. On the other
hand, if � is large, �a never vanishes and it approaches a
steady-state value as t→�. The system, thus, undergoes a
phase transition from an inactive phase to an active phase at
the critical density �c, at which �a decreases algebraically as
�a� t−�. Thus, the ordering of the system is determined by
the saturated, steady-state density ��a�sat, which is considered
to be an order parameter of the system.

The data of �a in general exhibits large fluctuations, par-
ticularly at �c, due to the diverging range of interactions at
criticality. In order to reduce such fluctuations, we take geo-
metrical averages �arithmetic averages in a double logarith-
mic scale� of data within an interval of 	�ln t�=0.001 and
plot the results on the average time in the same interval. We
find that this method not only reduces fluctuations but allows
us to save disk space.

A. The CLG model on a checkerboard fractal

Figure 3 shows the mean active particle density ��a�
against the evolution time. For �
0.642, ��a� appears to
converge and, for ��0.639, it decreases more rapidly than a
power law. Therefore, the critical density is between 0.639
and 0.642. The determination of �c is not simple because of
a finite size effect. Rossi et al. pointed out that, for a finite
size system on a regular lattice in two dimensions, the active
particle density followed a power-law behavior in the early-
time stage and decreased faster than a power law and even-
tually saturated as t→�. We find that the CLG model on a
checkerboard fractal exhibits a similar behavior and the de-
termination of the critical density is extremely difficult due
to the finite size effect. Despite such a difficulty, we deter-
mine �c=0.6399 for a checkerboard fractal. The critical den-
sity is determined by two different ways. First, the steady-
state value, i.e., the order parameter, vanishes at �c as

��a�sat���−�c��. From the plot in Fig. 3, the critical density
appears to be slightly smaller than but close to 0.64, i.e.,
�c=0.6399. Second, for a finite size system, the order param-
eter is in practice a function of two variables, i.e., the size of
the system L and the spatial correlation length ��, the latter
of which is characterized by the distance from the criticality
�−�c via ���	�−�c	−��. Using the basic scaling concepts
�30�, the order parameter can be written as ��a�sat

=L−�/��f�L	�−�c	���. Therefore, at �=�c, the order param-
eter is expected to show a power law ��a�sat�L−�/��. On the
other hand, if the density is away from the criticality, the
order parameter is no longer a function of a single variable,
nor shows a power-law behavior in L. We calculate the order
parameter for L=33, 34, 35, and 36 and find that the plot of
��a�sat yields a power law at �c=0.6399 with the power
� /��=1.182�5�, as shown in the inset of Fig. 3. �Note that
the number in parentheses denotes the uncertainty of the last
digit.� With the estimate of �c, we obtain �=0.287�3� from
the regression fit of ��a� in the large t region before the finite
size effect sets in. The order parameter exponent � is also
obtained as �=0.780�2� from the power-law fit of ��a�sat ver-
sus �−�c, as in the inset of Fig. 4. The spatial correlation-
length exponent is, thus, ��=0.66�5�. A careful analysis of
the data in the inset shows that the data for � close to �c
deviate from the regression fit. We believe it to be due to the
finite size effect. It should be noted, however, that assuming
the critical density as a parameter and attempting to fit the
whole region of the data, the best fit would be obtained for
�c
0.6395, which is smaller than the critical density ob-
tained above. However, for this value, one would obtain
critical exponents also different from those obtained above.
We find that with the exponents obtained by this method the
off-critical scaling does not hold.

The estimated critical exponents can be confirmed by the
off-critical scaling and finite size scaling. Consider ��a� at
the particle density � and at the evolution time t. Then, ��a�
near the critical point is a function of t and the temporal
correlation function ��, the latter of which is characterized by
the distance from the criticality via �� �	�−�c	−��. The scal-
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FIG. 3. The density of the active particles ��a� against the evo-
lution time for various values of the particle density �, i.e., from
bottom to top, �=0.635, 0.6365, 0.6385, 0.6399, 0.642, 0.645, and
0.649, for the CLG model on a checkerboard fractal. The inset is the
saturation density for three selected values of the particle density.
The power law is observed for �=0.6399.
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ing idea again allows us to write ��a� as a function of a single
variable, i.e., ��a�= t−�g�t	�−�c	���, g�x� being the scaling
function of the scaled variable x� t	�−�c	��. Considering ��a�
in the supercritical region in the t→� limit, it becomes the
order parameter, yielding ��a�sat���−�c�������−�c��. Thus,
the scaling relation �=��� is obtained. Using our estimates
of � and �, we get �� =2.71.

The off-critical scaling function g�x� is plotted in Fig. 5
against the scaled variable x� t	�−�c	��. Data for various val-
ues of the particle density collapse onto two separate curves,
one for �
�c �upper curve� and the other for ���c �lower
curve�. The alternate thick and slim parts of the data which
collapse for ���c are due to the wiggling of the Monte
Carlo data, caused presumably by the underlying lattice
structure, as one can observe in Fig. 3. We examine the same
scaling with �c=0.6395 and the exponents estimated using
this value as a critical density; however, we find that data do
not collapse. We, thus, confirm that our estimates for �c, �,
and � are valid.

The finite size scaling is also tested using the data for
smaller systems. Since our system is fractal, we pick the
linear size of the system as a multiple of 3, i.e., L=34, 35, 36,
and 37, and the steady-state density is calculated for various
values of � above the critical point. Figure 6 shows the
scaled density ��a�satL

�/�� against the scaled variable
	�−�c 	L1/��. Data for various sized systems and various den-
sities near criticality indeed scale with our estimates, imply-
ing that the values of � and �� are correct. The asymptotic
slope for the data beyond the criticality is 0.78, which is
identical to the value of �, as expected.

B. CLG model on a Sierpinski gasket

For the CLG model on a Sierpinski gasket, we employ the
reflective boundary condition by the reason we described in
Sec. II. The reflective boundary condition in general yields
the finite size effect more significantly than the periodic

boundary condition. However, we believe that the two
boundary conditions yield eventually the same critical be-
havior, although the nonuniversal critical density might be
different.

We realize that the determination of the critical density for
the CLG model on a Sierpinski gasket is more difficult than
for the same model on a checkerboard fractal, apparently due
to the finite size effect. As a test, we assume the critical
density as such that yields ��a� a power-law behavior in the
long time limit, up to 107 time steps. We find that ��a� ex-
hibits the best linear behavior on a double logarithmic scale
at �=0.318 395. The power-law behavior is observed only
for t
105 with the power of �=0.213 and the order param-
eter exponent is estimated as �=0.535. However, we find
that with these values neither the finite size scaling nor the
off-critical scaling hold. Failure of the scalings is attributed
to the incorrect exponents by the finite size effect.

The finite size effect for the CLG model on a Sierpinski
gasket appears to influence ��a� in such a way as to decay
rapidly, rather than decrease and then saturate. This leads to
the finite size scaling different from that on a checkerboard
fractal, as we will see later. Thus, for a finite system, the
active particle density decays in the large t region even at the
critical density. Because of this decreasing behavior, the
power-law behavior may be observed at the density greater
than the “true” critical density, at which the decaying behav-
ior of �a due to the finite-size effect is canceled by a satura-
tion in the supercritical region. As a consequence, the critical
density cannot be determined correctly from the power-law
behavior in the large t region.

In order to determine the critical density, we assume the
density which yields the widest region of the power-law be-
havior as the critical density. We find that ��a� exhibits per-
fect power-law behavior in the region of 10
 t
105 and
then decays rapidly for �=0.317 90. Data for a slightly larger
value of �, e.g., �=0.317 905, appear to yield a slight bump
just before the decay sets in �not shown�. We believe that
such a bump is a precursor of saturation, while the decay is
the finite size effect, indicating that this value of � is already
above the critical point. We, therefore, determine
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�c=0.317 90�5�. We believe that our estimate is accurate
based on the fact that exponents estimated using this value
yield the best data collapsing in both the off-critical scaling
and the finite size scaling, as we will see later.

Figure 7 shows ��a� for various sized systems at �c plotted
against the evolution time. The upper data are for
�=0.318 395 which yields the power-law behavior in the
larger t limit. �Note that the plot is shifted upward to avoid
overlapping with the lower plots.� If we estimate the critical
index from the power-law behavior in the large t region, we
could get �=0.213, �=0.535, and �� =2.51; however, with
these values, the off-critical scaling does not hold. The lower
plots in Fig. 7 are the data for �c=0.317 90 for various sized
systems, i.e., for, from left to right, L=28, 29, 210, 211, and
212. The power-law region becomes wider, up to four de-
cades, as expected from that the finite size effect decreases as
the size of the system increases, and the power-law fit yields
�=0.244 as shown by the dashed line in the plot. The steady-
state density is calculated for various values of � above �c
and the order parameter exponent is estimated as �
=0.547�5�. The exponent characterizing the temporal corre-
lation length is thus �� 
2.24.

In order to verify our estimates, we carry out the off-
critical scaling. Shown in Fig. 8 are the data of the scaled
densities of the active particles, ��a�t�, plotted against the
scaled variable t	�−�c	��. Data for 0.30
�
0.315 below �c
and for 0.319
�
0.3335 above �c fall on the same curve in
each case. We, therefore, believe from this scaling that our
determination of �c is correct and so are the critical
exponents.

The exponent characterizing the spatial correlation length
cannot be determined in this case by using the same method
as the plot in the inset in Fig. 3 because ��a� does not saturate
at �c for a finite size system, unlike the case of the checker-
board fractal. We instead consider the time dependence of
��a�. Then, ��a� is a function of two variables, i.e., ��a�
= f�t ,L�. From the scaling hypothesis, one can readily get the
scaling relation ��a�= t−�f�t /Lz�, where z=�� /�� is the dy-

namic exponent. We have tested the scaling function f�x�
= ��a�t� plotting against the scaled variable x� t /Lz, assum-
ing the scaling exponent z as a parameter. We find that the
best collapsing of data is observed for z=1.69�3�, as shown
in Fig. 9. From the scaling relation z=�� /��, we obtain
��=1.325�5�.

IV. SUMMARY AND CONCLUDING REMARKS

We have studied APT in the CLG model on a checker-
board fractal and on a Sierpinski gasket both of which are
embedded in two dimensions. We have estimated the critical
exponents �, �, ��, and ��, which characterize, respectively,
the density of the active particles in time, the order param-
eter, and the spatial and temporal correlations against the
distance from the critical point. Results were confirmed by
off-critical scaling and finite size scaling. The estimates are
compared in Table I with the known values on regular lat-
tices.
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Focusing on the order parameter exponents, it appears
that the result for a checkerboard fractal lies on the interpo-
lation line of the CLG model for the dimensionality between
1 and 2, while that for a Sierpinski gasket lies on the line of
the CTTP model. This suggests that the CLG model might
exhibit a different critical behavior from the CTTP model on
a checkerboard fractal, whereas on a Sierpinski gasket two
models might belong to the same universality class. As we
pointed out in Sec. I, since the CLG model does not have
symmetric absorbing states on both lattices, it appears clear
that the symmetry of the absorbing states alone is not the
primary cause of the universality split, but rather the deter-

minism might be more responsible. We realize that exactly
40% of the lattice sites on a checkerboard fractal are on the
dead ends, 40% are the sites with two nearest neighbors, and
the remaining 20% are those with four neighbors. Consider-
ing that particles trapped on dead ends cannot jump and that
active particles on sites with two neighbors jump determin-
istically, at least 60% of the jumps will be deterministic and
less than 40% will be stochastic. Therefore, the deterministic
hopping dominates the dynamics, and this appears to yield
the dynamics of the CLG model different from those of the
CTTP model. �Note that the transfer of particles from active
sites in the CTTP model is stochastic unless dead ends are
active sites.� The Sierpinski gasket, on the other hand, has a
coordination number 4 with no dead ends and, therefore, the
hopping of the active particles is most likely stochastic for
both the CLG and the CTTP models.

From our results, we surmise that both the CLG model
and the CTTP model on a Sierpinski gasket may belong to
the same universality class, while on a checkerboard fractal,
the two models might exhibit different behaviors. Examining
whether or not this speculation is correct, by estimating full
sets of exponents for both models on both fractal lattices,
would be an interesting topic and such research is currently
ongoing.
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TABLE I. Critical exponents for the conserved lattice gas model
on fractal lattices, in comparison with those on regular lattices.

� � �� ��

1Da 0.247 0.99 4.05 2.0

Checkerboardb 0.287�3� 0.780�2� 2.71 0.66�5�
Sierpinski gasketc 0.244 0.547�5� 2.24 1.325�5�
2Dd 0.43�1� 0.637�9� 1.46�5� 0.29�1�
3Dd 0.837�15�
4De 1.0

5Dd 1.0

aOur results using sequential updates �not reported�.
bdF=ln 5/ ln 3
1.465.
cdF=ln 3/ ln 2
1.585.
dReferences �19� and �20�.
eReference �20�.
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